Hyper Recurrent Neural Network: Condition Mechanisms for Black-box Audio Effect Modeling

Yen-Tung Yeh¹ Wen-Yi Hsiao² Yi-Hsuan Yang¹

¹National Taiwan University ²Independent researcher

Introduction

Virtual Analog Modeling

- Goal: Emulate the exact behavior of the analog device in the digital world
- Typical methods:

• We use neural networks for black-box modeling in our work

Modeling Types

- Snapshot modeling versus Full modeling
 Need to consider the condition or not
- Snapshot modeling

y[n] = f(x[n])

• Full modeling

y[n] = f(x[n], c)

y[n]: Output signal x[n]: Input signal f: Nonlinear function c: Condition signal

Core Questions

• How to inject the conditioning value to neural networks?

Prior work

CNN-based

Concatenation

(Damskägg & Välimäki 2019)

• FiLM

(Steinmetz & Reiss 2022)

RNN-based

• Concatenation (Wright & Välimäki 2019)

• Is there an advanced conditioning method for RNN-based architecture?

Damskägg & Välimäki "Deep learning for tube amplifier emulation" in ICASSP 2019 Steinmetz & Reiss "Efficient neural networks for real-time modeling of analog dynamic range compression" in JAES 2022 Wright & Välimäki "Real-time black-box modelling with recurrent neural networks," in DAFx19.

Proposed method

Overview

FiLM (Feature-wise Linear Modulation)

• Inject conditioning value via element-wise linear modulation

FiLM-RNN

HyperNetwork

• A network generates weights of another neural network

StaticHyper-RNN

DynamicHyper-RNN

Experiments & Results

Implementation details

• Data

- Boss OD-3 Overdrive pedal (self-collected)
- LA2A Compressor
- Training
 - Initialize hidden state with zeros
 - BPTT (Backpropagation through time)
 - 2048 samples for Boss OD-3
 - 8192 samples for LA2A Compressor
 - Loss function: MAE Loss + Multiresolution STFT Loss

Overdrive (Boss OD-3)

Model	Condition	OD-3 (Overdrive)						Params
110 401		L1	\mathbf{STFT}	LUFS	CF	RMS	Transient	
GRU	Concat FiLM StaticHypor	0.120 0.011 *	1.933 0.536^{\dagger}	$0.455 \\ 0.176 \\ 0.165$	2.932 0.676 * 1.650	1.096 0.401	27.338 12.504 12.347 [†]	$3585 \\ 17217 \\ 30360$
	DynamicHyper	$0.017 \\ 0.150$	0.098 0.428 *	0.105 0.075 *	0.883	0.318° 0.153^{*}	12.347 11.308^*	20289

Compressor (LA2A)

Model	Condition	LA2A (Compressor)						Params
		L1	STFT	LUFS	CF	RMS	Transient	
	Concat	0.108	0.507	0.716	2.081	1.640	21.002	3489
GRU	FiLM	0.011^\dagger	0.597	1.383	2.006^\dagger	3.081	15.825^{*}	17185
	StaticHyper	0.008^{*}	0.371^{*}	0.543	2.386	1.211	20.437	30361
	DynamicHyper	0.109	0.377^\dagger	0.377^\dagger	1.919^{*}	0.819^\dagger	19.826^\dagger	20169

Results-Computation Cost

Measuring GFLOPs on one-second audio

Models	GFLOPs
Concat-GRU	0.325
FiLM-GRU	0.307
StaticHyper-GRU	0.003
DynamicHyper-GRU	1.907

When Comparing to Concat:

- FiLM remains similar computation
- StaticHyper save 99% computation
- DynamicHyper cost more computation, but the quality is more better

Comprehensive Evaluation

Model	Condition	OD3 (Distortion)						Params
	condition	MAE	\mathbf{STFT}	LUFS	\mathbf{CF}	RMS	Transient	
	Concat	0.123	1.901	0.524	2.982	1.259	25.997	4769
LSTM	FiLM	0.145	1.057	0.248	1.834	0.552	20.322	$22561 \\ 40449$
								21857
	Check o	out our	, pape	er for r	nore r	esult	S	3585
CDI			pape			COULT		17217
GRU								30369
	0 01		dentente latente conten					20289
	Concat	0.033	0.928	0.305	1.177	0.671	27.634	21769
TCN	FiLM	0.044	0.698	0.338	0.894	0.842	33.678	29849
	Concat	0.013^\dagger	0.792	0.202	0.776^\dagger	0.447	19.103	19824
GCN	FiLM	0.149	0.672	0.141^\dagger	1.200	0.276	24.474	32368

Conclusion

- Novel condition mechanism for RNN-based architecture
 - Improve emulation quality
 - Save computation cost

More audio samples: https://yytung.notion.site/HyperRNN