

DDSP Guitar Amp: Interpretable Guitar Amplifier Modeling

Yen-Tung Yeh¹ Yu-Hua Chen¹ Yuan-Chiao Cheng² Jui-Te Wu² Jun–Jie Fu² Yi–Fan Yeh² Yi–Hsuan Yang¹

National Taiwan University² Positive Grid

Introduction

Guitar amplifier modeling

• Emulate the exact behavior of guitar amp in digital world

Typical methods

• Typical methods:

 In recent years, black-box (neural network-based) models have shown success in modeling guitar amplifier

Challenges

• High Computation Cost

from Neural Amp Modeler: https://www.neuralampmodeler.co m/post/towards-a-good-cpu-efficie nt-nam

- Non-interpretable
 - Hard to tune the sonic sound characteristics
 - Hard to understand the tone

In this work

• Goal: Low-computation cost & interpretable guitar amplifier modeling model

Low-computation

Interpretable

• We named it: **DDSP Guitar Amp**

Comparison with NN

Computation

Background

Delve into physical guitar amp

• We only focus on guitar head in this work

Preamp	Determines the primary tone of the an			
Tone Stack	Alter the frequency response			
Poweramp	Tone enhancement			
Transformer	Dynamics control and further coloring			

Miklanek, Stepan, et al. "Neural grey-box guitar amplifier modelling with limited data." *International Conference on Digital Audio Effects*. Aalborg University, 2023.

Proposed Model

Overview

Diff-Preamp

• Wiener HammerStein with multiple stages

In-series

- F Filter : Determines the amount of distortion per frequency
- G Pre-Gain : Determines the level of the distortion
- NL Nonlinear : Introduce the nonlinearity
- G Post-Gain : Adjust output level without altering distortion characteristics
- F Filter : Alter the frequency after nonlinear function

Nonlinear Function

• TanH v.s. GRU with hidden size 1

TanH	Ours		
Static	Dynamic		
Symmetric	Asymmetric		
Non-Learnable	Learnable		

Diff-Tone stack

• Low-shelf + peak + high-shelf filter

 $z_1[n] \rightarrow P \rightarrow H \rightarrow z_2[n]$

L : Control "bass" frequency responses (low)

P : Control "mids" frequency responses (mid)

H : Control "treble" frequency responses (high)

Diff-Poweramp

- Phase Splitter (nonlinear) + Phase Inversion
- Wiener HammerStein with single stage
- Master Volume + Filter (emulate feedback)

PS Phase Splitter : Split into two identical signal that are 180 degrees out of phase with each other

- PI Phase Inv. : Inverse phase back
- Master : Increase level

Diff-Transformer

• Hysteresis behavior by GRU with hidden size 1

 $z_3[n] \rightarrow G \rightarrow NL \rightarrow F \rightarrow y[n]$

Knob Controller

Core idea: The mapping relationship between knob and dsp parameters is nonlinear

Recap

Experiments

- Datasets: Marshall JVM 410H from (Miklanek, Stepan, et al)
- Loss Func: L1 Loss + Multi-resolution STFT Loss
- Baselines:
 - Small GRU (hidden size 8)
 - Big GRU (hidden size 48)
- Ablation studies:
 - WH only (Wiener Hammerstein model only)
 - WH + LPH + WH (Replace poweramp arch. with WH)
 - WH + LPH + POW (Ours proposed model w/o transformer)
 - WH + LPH + POW + TRANS (Ours full proposed model)

Miklanek, Stepan, et al. "Neural grey-box guitar amplifier modelling with limited data." *International Conference on Digital Audio Effects*. Aalborg University, 2023.

Model	Seen knob conditions		Unseen knob conditions		Ons/sample	Params
	$MAE\downarrow$	$MR\text{-}STFT\downarrow$	$MAE\downarrow$	MR-STFT \downarrow	opsisumpie	i ui ui iii
A. Small Concat-GRU-8	0.057	4.302	0.075	5.762	1,344	369
B. Big Concat-GRU-48	0.013	1.214	0.023	1.851	19,872	7,969
C. WH Only	0.317	2.552	0.189	4.675	736	4,462
D. WH+LPH+WH	0.063	5.098	0.066	5.803	995	10,213
E. WH+LPH+POW	0.034	2.979	0.057	4.825	1,243	8,200
F. WH+LPH+POW+TRANS	0.024	2.161	0.043	3.972	1,352	10,126

Table 1. Evaluation results of (A-B) black-box baselines and (F) the proposed DDSP model and (C-E) its ablations.

Conclusion

DDSP Guitar Amp can achieve competitive result with low computation, parametric, interpretable properties.

Low-computation

Interpretable

Demo page Paper

Demo page: <u>https://ytsrt66589.github.io/ddspGuitarAmp_Demo/</u> Paper: <u>https://arxiv.org/abs/2408.11405</u>